Question #f2c09

3 Answers
Jun 3, 2017

Recall the following identities:

  • #sin2x = sin(x+x) = sinxcosx + cosxsinx#

# = 2sinxcosx#

  • #cos2x = cos(x+x) = cosxcosx - sinxsinx#

#= cos^2x - sin^2x#

  • #sin^2x + cos^2x = 1#

This gives:

#(2(sinx + cosx))/(2sinxcosx + cos^2x - sin^2x + 1)#

#= (2(sinx + cosx))/(2sinxcosx + cos^2x - cancel(sin^2x) + cancel(sin^2x) + cos^2x)#

#= (cancel(2)(sinx + cosx))/(cancel(2)(sinxcosx + cos^2x))#

#= cancel(sinx + cosx)/(cosxcancel((sinx + cosx)))#

#= 1/cosx -= color(blue)(secx)#

Jun 3, 2017

#LHS=(2(cosx+sinx))/(sin2x+cos2x+1) #

#=(2(cosx+sinx))/(2sinxcos+2cos^2x) #

#=(2(cosx+sinx))/(2cos(sinx+cosx)) #

#=1/cosx#

#= secx=RHS#

Proved

Jun 3, 2017

look at picture

Explanation:

enter image source here

..