How do you expand #(2x+5)^7#?

2 Answers
Jun 3, 2017

#(2x+5)(2x+5)(2x+5)(2x+5)(2x+5)(2x+5)(2x+5)#

Explanation:

#(2x+5)^7# simply means #(2x+5)# times itself 7 times.
So #(2x+5)^3# would be #(2x+5)(2x+5)(2x+5)#
#(2x+5)^5# would be #(2x+5)(2x+5)(2x+5)(2x+5)(2x+5)#

This works regardless of whats in the brackets.
#(3x^3-5xm×38)^2# is #(3x^3-5xm×38)(3x^3-5xm×38)#

And without brackets #5^5# is 5×5×5×5×5
#38×12^3# is 38(12×12×12)

And so forth.

Jun 3, 2017

#128x^7+2240x^6+16800x^5+....#

Explanation:

#"using the "color(blue)"binomial theorem"#

#• (x+y)^n=sum_(r=0)^n((n),(r))x^(n-r)y^r#

#"where " ((n),(r))=(n!)/(r!(n-r)!)#

#"here " x=2x" and " y=5#

#rArr(2x+5)^7#

#=((7),(0))(2x)^7 .5^0+((7),(1))(2x)^6 .5^1+((7),(2))(2x)^5 .5^2#

#color(white)(=)+((7),(3))(2x)^4 .5^3+((7),(4))(2x)^3 .5^4+((7),(5))(2x)^2 .5^5#

#color(white)(=)+((7),(6))(2x)^1 .5^6+((7),(7))(2x)^0 .5^7#

#"we can obtain the binomial coefficients using the "#
#"appropriate row of "color(blue)"Pascal's triangle"#

#"for n = 7 the row of coefficients is"#

#1color(white)(x)7color(white)(x)21color(white)(x)35color(white)(x)35color(white)(x)21color(white)(x)7color(white)(x)1#

#=1. 128x^7+7.5.64x^6+21.25.32x^5+35.125.16x^4#

#color(white)(=)+35.625.8x^3+21.3125.4x^2+7.15625.2x+78125#

#=128x^7+2240x^6+16800x^5+70000x^4+175000x^3#

#color(white)(=)+262500x^2+218750x+78125#