Question #dbf40

2 Answers
Jun 3, 2017

Separate variables, perform partial fraction decomposition, integrate.

Explanation:

Rearranging,

#1/(1-y^2)"d"y="d"x#.

Integrating both sides and factorising gives,

#int 1/((1-y)(1+y))"d"y=x#.

Performing a partial fraction decomposition gives,

#1/2int 1/(1-y) + 1/(1+y) = x#
#-1/2ln(1-y)+1/2ln(1+y) = x#
#1/2ln((1+y)/(1-y))=x#

Adding in the constant of integration gives,

#1/2ln(C(1+y)/(1-y))=x#
#ln(C(1+y)/(1-y))=2x#
#e^(2x)=C*((1+y)/(1-y))#

Redefining the constant,

#Ke^(2x) = (1+y)/(1-y)#.

Solving for y,

#y(1+Ke^(2x))=(Ke^(2x)-1)#
#y=(Ke^(2x)-1)/(Ke^(2x)+1)#.

Then choose K=1.

Jun 3, 2017

Given: #y=(e^(2x)-1)/(e^(2x)+1)#

Use the quotient rule:

#dy/dx = ((d(e^(2x)-1))/dx(e^(2x)+1)- (e^(2x)-1)(d(e^(2x)+1))/dx)/(e^(2x)+1)^2#

#dy/dx = ((2e^(2x))(e^(2x)+1)- (e^(2x)-1)(2e^(2x)))/(e^(2x)+1)^2#

#dy/dx = (4e^(2x))/(e^(2x)+1)^2" [1]"#

#1 - y^2 = 1 - ((e^(2x)-1)/(e^(2x)+1))^2#

#1 - y^2 = 1 - (e^(2x)-1)^2/(e^(2x)+1)^2#

#1 - y^2 = (e^(2x)+1)^2/(e^(2x)+1)^2 - (e^(2x)-1)^2/(e^(2x)+1)^2#

#1 - y^2 = ((e^(2x)+1)^2 - (e^(2x)-1)^2)/(e^(2x)+1)^2#

#1 - y^2 = ((e^(4x)+ 2e^(2x)+1) - (e^(4x)- 2e^(2x)+1))/(e^(2x)+1)^2#

#1 - y^2 = (e^(4x)+ 2e^(2x)+1 - e^(4x)+ 2e^(2x)-1)/(e^(2x)+1)^2#

#1 - y^2 = (2e^(2x)+ 2e^(2x))/(e^(2x)+1)^2#

#1 - y^2 = (4e^(2x))/(e^(2x)+1)^2" [2]"#

Equation [1] is the same as equation [2]. Q.E.D.