How do you test the series #Sigma n^-n# from n is #[1,oo)# for convergence?
1 Answer
Using the ratio test
Explanation:
The ratio test finds the ratio between terms
Hence, in order to test
#k->oo abs(u_(k+1)/u_k)#
#= k->ooabs((k+1)^-(k+1)/k^-k)#
#=k->oo abs(k^k/(k+1)^(k+1))#
#=k->oo abs(k^k/(k+1)^k*1/(k+1))#
#=k->oo abs((k/(k+1))^k*1/(k+1))#
#=k->oo abs((1/(1+1/k))^k*1/(k+1))#
#because k->oo 1/k=0#
#therefore k->ooabs((1/(1+1/k))^k)=k->ooabs((1/(1+0))^k)=abs(1)=1#
#therefore k->ooabs((1/(1+1/k))^k*1/(k+1))=k->ooabs(1*1/(k+1))#
#=k->ooabs(1/(k+1))=0#
i.e.