How do you solve #5^ { - 3x - 3} = 625#?
1 Answer
Jun 6, 2017
Explanation:
First, take the
#5^(-3x-3) = 625#
#5^(-3x-3) = 5^4#
#log_5(5^(-3x-3)) = log_5(5^4)#
The logarithm and the base cancel out:
#color(red)cancel(log_5)(color(red)(cancel5)^(-3x-3)) =color(red)cancel(log_5)(color(red)(cancel5)^4) #
#-3x-3 = 4#
Now, use normal algebra to solve for
#-3x = 7#
#x = -7/3#
Final Answer