Solve the equation #sectheta+costheta=5/3#?

2 Answers
Jun 6, 2017

#sec theta -cos theta = +-sqrt(-11/9) = +-sqrt(11/9) i#

Explanation:

#sec theta +cos theta =5/3 :. (sec theta +cos theta)^2 =25/9# or

#sec^2 theta +cos^2 theta + 2 sec theta*cos theta=25/9 # or

#sec^2 theta +cos^2 theta + 2 cancelsec theta*1/cancelsec theta=25/9 # or

#sec^2 theta +cos^2 theta =25/9 -2=7/9#

#(sec theta -cos theta)^2 = sec^2 theta +cos^2 theta - 2 sec theta*cos theta = 7/9-2 =-11/9#

#sec theta -cos theta = +-sqrt(-11/9) = +-sqrt(11/9) i# [Ans]

Jun 18, 2017

We cannot have #sectheta+costheta=5/3 < 4#

Explanation:

As #(sectheta+costheta)^2=(sec theta-costheta)^2+4secthetacostheta#

= #(sec theta-costheta)^2+4#

As #(sec theta-costheta)^2 >=0#,

we have #(sec theta+costheta)^2 >= 4#

and hence #sec theta+costheta >=2#

or #sectheta+costheta <= -2#

This is also seen from the graph of #secx+cosx#
graph{secx+cosx [-10, 10, -5, 5]}

Hence, we cannot have #sectheta+costheta=5/3 < 4#

Also observe that #sectheta-costheta# can take all values.

graph{secx-cosx [-10, 10, -5, 5]}