Question #a648f

1 Answer
Jun 7, 2017

Q-1

The projection or component of #vecA# along #vecB# is #(vecA*vecB)/absvecB^2vecB#

So the component of #veca=3hati+4hatj# along the direction of #hati+hatj# will be

#((3hati+4hatj)*(hati+hatj))/abs(hati+hatj)^2(hati+hatj)#

#=(3+4)/(sqrt2)^2(hati+hatj)#

#=7/2(hati+hatj)#

And the component of #veca=3hati+4hatj# along the direction of #hati-hatj# will be

#((3hati+4hatj)*(hati-hatj))/abs(hati-hatj)^2(hati-hatj)#

#=(3-4)/(sqrt2)^2(hati-hatj)#

#=-1/2(hati-hatj)#

Q-2

Let #(x,y) # be the cartesian coordinates of the point A represeted by the radius vector #vecr=athati-bt^2hatj#

So #x=at and y=-bt^2#

Eliminating t from above relation we get

#y=-b(x/a)^2#

#=>y=-b/a^2x^2#

#=>x^2=-a^2/by#

This is the equation of the trajectory represented by the radius vector #vecr=athati-bt^2hatj#