Question #daa19

2 Answers
Jun 7, 2017

#"Please refer to the description section and check the operations."#

Explanation:

enter image source here

  • The forces and their directions are described in figure-1.

enter image source here

  • We can solve the problem in many ways.
  • In this solution we used the method of dividing the forces into horizontal and vertical components.

#"The components of " F_3 " are :"#
#F_("3x")=F_3*cos(30)=50sqrt (3). sqrt(3)/2=(50.3)/2=150/2=75N#

#F_("3y")=F_3.sin(30)=50sqrt(3)*1/2=25sqrt(3)N #

enter image source here

#"The components of " F_1 " are :"#

#F_("1x")=F_1*cos(0)=100.1=100N#

#F_("1y")=F_1.sin(0)=100.0=0N#

enter image source here

#"The components of " F_2 " are :"#
#F_("2x")=F_2*cos(30)=100sqrt (3). sqrt(3)/2=(100.3)/2=300/2=150N#

#F_("2y")=-F_2.sin(30)=100sqrt(3)*1/2=-50sqrt(3)N #

enter image source here

  • Figure-5 shows the vector sum of the horizontal components of the forces.

#Sigma F_("x")=F_("1x")+F_("2x")+F_("3x")#
#Sigma F_("x")=100+150+75=325N#

enter image source here

  • Figure-6 shows the vector sum of the vertical components of the forces.

#Sigma F_("y")=F_("1y")+F_("2y")+F_("3y")#
#Sigma F_("y")=0-50sqrt(3)+25sqrt(3)=-25sqrt(3)N#

enter image source here

  • Figure 7 shows the resultant vector and direction.

#F_r=sqrt((Sigma F_x)^2+(Sigma F_y)^2)#

#F_r=sqrt((325)^2+(-sqrt(25))^2)#

#F_r=sqrt(105625+625)#

#F_r=325.96N#

  • We must specify the angle of the resultant vector.

# tan theta=(Sigma F_y) / (Sigma F_x)#

#tan theta=-(25sqrt(3))/325=-(sqrt(3))/13=-0.13323468#

#theta=-7.59^o#

Jun 7, 2017

The resultant force is #=327.9N# in the direction #=7.6º# of the center rope

Explanation:

#cos30=sqrt3/2#

#sin30=1/2#

Resolving in thedirection parallel to the #100N# force

#F_h=100+50sqrt3cos30 +100sqrt3cos30#

#=100+50sqrt3*sqrt3/2+100sqrt3*sqrt3/2#

#=100+75+150=325N#

Resolving perpendicular to the #100N# force

#F_p=100sqrt3sin30-50sqrt30sin30#

#=100sqrt3*1/2-50sqrt3*1/2#

#=50sqrt3-25sqrt3#

#=25sqrt3#

The resultant force is

#F=sqrt(F_h^2+F_p^2)#

#=sqrt(325^2+(25sqrt3)^2)#

#=sqrt107500#

#=327.9N#

The direction is

#theta=arctan((25sqrt3)/325)#

#=arctan(sqrt3/13)#

#=7.6º#