How do you simplify #\frac { 7x ^ { 4} } { 6x ^ { 4} }#? Prealgebra Exponents, Radicals and Scientific Notation Exponents 1 Answer Shwetank Mauria · Steve M Jun 9, 2017 #(7x^4)/(6x^4)=7/6# Explanation: #(7x^4)/(6x^4)# = #(7xx x xx x xx x xx x)/(6xx x xx x xx x xx x)# = #(7xx cancelx xx cancelx xx cancelx xx cancelx)/(6xx cancelx xx cancelx xx cancelx xx cancelx)# = #7/6# Answer link Related questions How do you simplify #c^3v^9c^-1c^0#? How do you simplify #(- 1/5)^-2 + (-2)^-2#? How do you simplify #(4^6)^2 #? How do you simplify #3x^(2/3) y^(3/4) (2x^(5/3) y^(1/2))^3 #? How do you simplify #4^3ยท4^5#? How do you simplify #(5^-2)^-3#? How do you simplify and write #(-5.3)^0# with positive exponents? How do you factor #12j^2k - 36j^6k^6 + 12j^2#? How do you simplify the expression #2^5/(2^3 times 2^8)#? When can I add exponents? See all questions in Exponents Impact of this question 1403 views around the world You can reuse this answer Creative Commons License