How do you integrate #int (x-x^2)/((x+3)(x-1)(x+4)) # using partial fractions?

1 Answer
Jun 11, 2017

#int (x-x^2)/((x+3)(x-1)(x+4)) dx = 3 ln abs(x+3)-4 ln abs(x+4) + C#

Explanation:

#(x-x^2)/((x+3)(x-1)(x+4)) = A/(x+3)+B/(x-1)+C/(x+4)#

We can find #A#, #B# and #C# using Heaviside's cover up method:

#A=((color(blue)(-3))-(color(blue)(-3))^2)/(((color(blue)(-3))-1)((color(blue)(-3))+4)) = (-12)/((-4)(1)) = 3#

#B=((color(blue)(1))-(color(blue)(1))^2)/(((color(blue)(1))+3)((color(blue)(1))+4)) = 0/((4)(5)) = 0#

#C=((color(blue)(-4))-(color(blue)(-4))^2)/(((color(blue)(-4))+3)((color(blue)(-4))-1)) = (-20)/((-1)(-5)) = -4#

So:

#int (x-x^2)/((x+3)(x-1)(x+4)) dx = int 3/(x+3)-4/(x+4) dx#

#color(white)(int (x-x^2)/((x+3)(x-1)(x+4)) dx) = 3 ln abs(x+3)-4 ln abs(x+4) + C#