Evaluate the integral #int (sec 2x - 1)/(sec 2x + 1) dx #?

1 Answer
Jun 14, 2017

# int \ (sec 2x - 1)/(sec 2x + 1) \ dx = tan x -x + c #

Explanation:

Let:

# I = int \ (sec 2x - 1)/(sec 2x + 1) \ dx #

We can simplify the denominator by using the definition of #secx#

# I = int \ (sec 2x - 1)/(sec 2x + 1) \ dx #
# \ \ = int \ (1/(cos 2x) - 1)/(1/(cos2x) + 1) \ dx #
# \ \ = int \ (1/(cos 2x) - 1)/(1/(cos2x) + 1) * (cos2x)/(cos2x) \ dx #
# \ \ = int \ (1-cos 2x)/(1+cos2x) \ dx #

Using the identity #cos2A -= cos^2 A - sin^2A # we then have:

# I = int \ (1+sin^2x-cos^2x)/(1+cos^2 x - sin^2x) \ dx #

Using the identity #sin^2A+cos^2A-=1# we then have:

# I = int \ (sin^2x+sin^2x)/(cos^2 x + cos^2x) \ dx #
# \ \ = int \ (2sin^2x)/(2cos^2x) \ dx #
# \ \ = int \ tan^2x \ dx #

We can now easily integrate by using the identity #tan^2A+1=sec^2A# to get:

# I = int \ sec^2x -1 \ dx #
# \ \ = tan x -x + c #