Evaluate the integral #int (sec 2x - 1)/(sec 2x + 1) dx #?
1 Answer
Explanation:
Let:
# I = int \ (sec 2x - 1)/(sec 2x + 1) \ dx #
We can simplify the denominator by using the definition of
# I = int \ (sec 2x - 1)/(sec 2x + 1) \ dx #
# \ \ = int \ (1/(cos 2x) - 1)/(1/(cos2x) + 1) \ dx #
# \ \ = int \ (1/(cos 2x) - 1)/(1/(cos2x) + 1) * (cos2x)/(cos2x) \ dx #
# \ \ = int \ (1-cos 2x)/(1+cos2x) \ dx #
Using the identity
# I = int \ (1+sin^2x-cos^2x)/(1+cos^2 x - sin^2x) \ dx #
Using the identity
# I = int \ (sin^2x+sin^2x)/(cos^2 x + cos^2x) \ dx #
# \ \ = int \ (2sin^2x)/(2cos^2x) \ dx #
# \ \ = int \ tan^2x \ dx #
We can now easily integrate by using the identity
# I = int \ sec^2x -1 \ dx #
# \ \ = tan x -x + c #