How do you find the midpoint of (5√2, 2√3), and (√2, 2√3)?

1 Answer
Jun 14, 2017

See a solution process below:

Explanation:

The formula to find the mid-point of a line segment give the two end points is:

#M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)#

Where #M# is the midpoint and the given points are:

#(color(red)(x_1), color(red)(y_1))# and #(color(blue)(x_2), color(blue)(y_2))#

Substituting the values from the points in the problem gives:

#M = ((color(red)(5sqrt(2)) + color(blue)(sqrt(2)))/2 , (color(red)(2sqrt(3)) + color(blue)(2sqrt(3)))/2)#

#M = ((color(red)(5sqrt(2)) + color(blue)(1sqrt(2)))/2 , (color(red)(2sqrt(3)) + color(blue)(2sqrt(3)))/2)#

#M = ((5 + 1)sqrt(2))/2 , ((2 + 2)sqrt(3))/2)#

#M = ((6sqrt(2))/2 , (4sqrt(3))/2)#

#M = (3sqrt(2) , 2sqrt(3))#