To find the value of the expression in the problem we need to substitute #color(red)(3 + sqrt(8))# for each occurrence of #color(red)(x)# in the expression and then simplify the resulting expression:
#color(red)(x)^2 + 1/color(red)(x)^2# become:
#color(red)((3 + sqrt(8)))^2 + 1/color(red)((3 + sqrt(8)))^2#
We can use this rule to square the terms:
#(a + b)^2 = a^2 + 2ab + b^2#
Substituting #3# for #a# and substituting #sqrt(8)# for #b# gives:
#(3 + sqrt(8))^2 => 3^2 + (2 * 3 * sqrt(8)) + sqrt(8)^2 =>#
#9 + 6sqrt(8) + 8 =>#
#17 + 6sqrt(8)#
We can substitute this for both occurrences of #color(red)((3 + sqrt(8)))^2# giving:
#17 + 6sqrt(8) + 1/(17 + 6sqrt(8))#
We can put the term on the left over a common denominator so we can add the fractions giving:
#((17 + 6sqrt(8))/(17 + 6sqrt(8))) xx (17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#
#(17 + 6sqrt(8))^2/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8))#
We can square the numerator of the fraction on the left using the same rule giving:
#(17^2 + (2 * 17 * 6sqrt(8)) + (6sqrt(8))^2)/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#
#(289 + 2046sqrt(8) + (36 * 8))/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#
#(289 + 2046sqrt(8) + 288))/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#
#(577 + 2046sqrt(8))/(17 + 6sqrt(8)) + 1/(17 + 6sqrt(8)) =>#
#(577 + 2046sqrt(8) + 1)/(17 + 6sqrt(8)) =>#
#(578 + 2046sqrt(8))/(17 + 6sqrt(8))#