How do you simplify #(1/sqrt3) + (1/sqrt 2)#?

2 Answers

see below

Explanation:

#sqrt 3 / 3 + sqrt 2 / 2 = frac{3 sqrt 2 + 2 sqrt 3}{6}#

Jun 19, 2017

#= (2sqrt3 +3sqrt2)/6#

Explanation:

Add in the same way as with any fractions: find the LCD

#1/sqrt3 + 1/sqrt2 = (??????)/(sqrt3 xx sqrt2)#

Find equivalent fractions:

#(sqrt2+sqrt3)/(sqrt3 xx sqrt2) = (sqrt2+sqrt3)/sqrt6#

Rationalise the denominator by multiplying by #sqrt6/sqrt6#

#(sqrt2+sqrt3)/sqrt6 xx sqrtcolor(blue)(6)/sqrt6 = (color(blue)(sqrt2xxsqrt3)(sqrt2+sqrt3))/(sqrt6^2)#

#= (2sqrt3 +3sqrt2)/6#