How do you integrate #\frac { d x } { x } = ( x e ^ { 3y } + x ) d y#?

1 Answer
Jun 20, 2017

#-1/x=1/3e^(3y)+y+C#

Explanation:

Factor:

#dx/x=x(e^(3y)+1)dy#

Separate variables:

#dx/x^2=(e^(3y)+1)dy#

Integrate both sides independently:

#intdx/x^2=int(e^(3y)+1)dy#

On the left, use #intx^ndx=x^(n+1)/(n+1)# where #n!=-1#.

On the right, for #inte^(3y)dy# use the substitution #u=3y# or consider the reverse chain rule, such that #1/3d/(dy)e^(3y)=e^(3y)#.

The constant of integration can be added on either side.

#-1/x=1/3e^(3y)+y+C#

#y# cannot be solved explicitly, so this is an implicit relation.