What is the vertex of # y=-3x^2+5x+6#?
3 Answers
Explanation:
The vertex can be found using differentiation, differentiating the equation and solving for 0 can determine where the x point of the vertex lies.
Thus the
Now we can substitute
Explanation:
#"for a parabola in standard form " y=ax^2+bx+c#
#"the x-coordinate of the vertex is " x_(color(red)"vertex")=-b/(2a)#
#y=-3x^2+5x+6" is in standard form"#
#"with " a=-3,b=5,c=6#
#rArrx_(color(red)"vertex")=-5/(-6)=5/6#
#"substitute this value into the function for y-coordinate"#
#rArry_(color(red)"vertex")=-3(5/6)^2+5(5/6)+6=97/12#
#rArrcolor(magenta)"vertex "=(5/6,97/12)#
Explanation:
TO FIND THE X-VALUE OF THE VERTEX:
Use the formula for the axis of symmetry by substituting values for
TO FIND THE Y-VALUE OF THE VERTEX:
Use the formula below by substituting values for
Express as a coordinate.