How do you find the antiderivative of #int sin^2xdx#?
2 Answers
Jun 20, 2017
I got:
Explanation:
I tried this:
Jun 20, 2017
We can start with the cosine double angle formula to derive another expression equivalent to
#cos2x=cos^2x-sin^2x=1-2sin^2x#
Then:
#2sin^2x=1-cos2x#
So:
#intsin^2xdx=1/2int(1-cos2x)dx#
Integrating both of these term-by-term, with a substitution in the integration of
#=1/2(x-1/2sin2x)#
Which can be rewritten using
#=1/2(x-sinxcosx)+C#