Question #e09ab

1 Answer
Jun 22, 2017

#1/2secxtanx-cscx+3/2lnabs(secx+tanx)+C#

Explanation:

#I=intcsc^2xsec^3xdx#

Use #csc^2x=1+cot^2x#:

#I=int(1+cot^2x)sec^3xdx=intsec^3xdx+intcsc^2xsecxdx#

Again use #csc^2x=cot^2x+1#:

#I=intsec^3xdx+int(cot^2x+1)secxdx#

#color(white)I=intsec^3xdx+intsecxdx+intcotxcscxdx#

The two rightmost integrals are standard:

#I=intsec^3xdx+lnabs(secx+tanx)-cscx#

Let #J=intsec^3xdx#. To solve this, begin with integration by parts, letting:

#u=secx" "=>" "du=secxtanxdx#
#dv=sec^2xdx" "=>" "v=tanx#

Then:

#J=secxtanx-intsecxtan^2xdx#

Using #tan^2x=sec^2x-1#:

#J=secxtanx-intsecx(sec^2x-1)dx#

#color(white)J=secxtanx-intsec^3xdx+intsecxdx#

The integral of #secx# is common. We can add #J# to both sides since its reappeared on the right-hand side:

#2J=secxtanx+lnabs(secx+tanx)#

#J=1/2secxtanx+1/2lnabs(secx+tanx)#

Then the original integral equals:

#I=(1/2secxtanx+1/2lnabs(secx+tanx))+lnabs(secx+tanx)-cscx#

#color(white)I=color(blue)(1/2secxtanx-cscx+3/2lnabs(secx+tanx)+C#