How do you find the integral of #int 1/(xsqrt(x^4-4)#?
1 Answer
Jun 23, 2017
Explanation:
#I=intdx/(xsqrt(x^4-4))#
Try the substitution
It also implies that
#I=1/2int(2xdx)/(x^2sqrt(x^4-4))#
#I=1/2int(2secthetatanthetad theta)/(2sectheta(2tantheta))#
#I=1/4intd theta#
#I=1/4theta#
From
#I=1/4sec^-1(x^2/2)+C#