How do you graph, label the vertex, axis of symmetry and x intercepts of #y=(3x-1)(x-3)#?

2 Answers
Jun 23, 2017

graph{(3x-1)(x-3) [-20, 20, -10, 10]}
Vertex = ( #5/3#, #-8/3#)
Axis of symmetry = #x=5/3#
X-intercepts = #(1/3,0) and (3,0)#

Explanation:

Multiplying the two brackets we get the quadratic,
#3x^2-10x+3#
Comparing with #ax^2+bx+c#, we get
#a=3 , b=-10, c=3#
and the Discriminant = #b^2-4ac# => #64#
Co-ordinates of Vertex of parabola are (#-b/(2a)#,#-D/(4a)#)
plug the the values of #a,b,c# to get vertex of parabola.

Axis of symmetry is the x-coordinate of Vertex i.e
#x=5/3#

x-intercept of the parabola is basically the roots of equation.
Roots can be obtained by equating the function to #0#.
#=>(3x-1)(x-3)=0#
either #3x-1=0# or #x-3=0# (By Zero Product Rule)
this gives #x=1/3 , 3#
These are the x-intercepts.

Jun 23, 2017

X-intercept

#x=1/3#
#x=3#
Vertex #(5/3, -16/3)#
Axis of symmetry #x=5/3#

Explanation:

Given -

#y=(3x-1)(x-3)#

X-intercept
At #y=0#

#(3x-1)(x-3)=0#

#3x=1#
#x=1/3#

#x=3#

#y=3x^2-x-9x+3#
#y=3x^2-10x+3#

Vertex

#x=(-b)/(2a)=(-(-10))/(2 xx3)=10/6=5/3#

At #x=5/3#

#y=3(5/3)^2-10(5/3)+3#
#y=3(25/9)-50/3+3#
#y=25/3-50/3+3#
#y=(25-50+9)/3=-16/3#

Vertex #(5/3, -16/3)#

Axis of symmetry #x=5/3#

enter image source here