How do you find #\lim _ { n \rightarrow \infty } \frac { 2x ^ { 5} - 3x ^ { 2} } { 3x ^ { 5} - x ^ { 3} }#?

1 Answer
Jun 23, 2017

I think you meant #x->oo#

Explanation:

If it is how I think it is you have:
#lim_(x->oo)((2x^5-3x^2)/(3x^5-x^3))=#
collect #x^5#:
#lim_(x->oo)(cancel(x^5)(2-3/x^3))/(cancel(x^5)(3-1/x^2))=#
as #x->oo# then #1/x^n->0# and so:

#lim_(x->oo)((2-3/x^3))/((3-1/x^2))=2/3#