How do you find #\lim _ { x \rightarrow 9} ( \frac { x ^ { 2} - 9} { x - 9} )#?

1 Answer
Jun 24, 2017

Not defined.

Explanation:

#Lt_(x->9)((x^2-9)/(x-9))#

Let #x=9+Deltax#, then as #x->9#, #Deltax->0#

and #Lt_(x->9)((x^2-9)/(x-9))#

= #Lt_(Deltax->0)(((9+Deltax)^2-9)/(9+Deltax-9))#

= #Lt_(Deltax->0)((81+18Deltax+Deltax^2-9)/(9+Deltax-9))#

= #Lt_(Deltax->0)((72+18Deltax+Deltax^2)/(Deltax))#

= #Lt_(Deltax->0)(72/(Deltax)+18Deltax+Deltax)#

= #oo#

But observe that when #x=9-Deltax# it will #-oo# and it is discontinuous at #x=9# and hence limit is not defined at #x=9#
graph{(x^2-9)/(x-9) [-160, 160, -80, 80]}