How do you find the point of intersection between linear and quadratic relation: y=x+7 and #y=(x+3)^2-8#?
1 Answer
Jun 24, 2017
Explanation:
#"equate " y=x+7" and " y=(x+3)^2-8#
#rArr(x+3)^2-8=x+7#
#"rearrange and equate to to zero"#
#x^2+6x+9-8=x+7#
#rArrx^2+5x-6=0#
#rArr(x+6)(x-1)=0#
#rArrx=-6" or " x=1#
#"substitute these values into " y=x+7#
#x=-6toy=-6+7=1rArr(-6,1)#
#x=1toy=1+7=8rArr(1,8)#
#"the points of intersection are " (-6,1)" and " (1,8)# graph{(y-x^2-6x-1)(y-x-7)=0 [-20, 20, -10, 10]}