How do you use the definition of a derivative to find f' given #f(x)=sqrt(4x+3)# at x>-3/4?

1 Answer
Jun 24, 2017

#f'=2/sqrt(4x+3)#

See below for derivation

Explanation:

The first principle defines the derivative of a function #f# as such:
#f'=lim_(h->0)(f(x+h)-f(x))/(h)#

We let #f=sqrt(4x+3)#
Then
#f'=lim_(h->0)(sqrt(4(x+h)+3)-sqrt(4x+3))/(h)#

#=lim_(h->0)1/h*(sqrt(4x+4h+3)-sqrt(4x+3))#

#=lim_(h->0)1/h*(sqrt(4x+4h+3)-sqrt(4x+3))*(sqrt(4x+4h+3)+sqrt(4x+3))/(sqrt(4x+4h+3)+sqrt(4x+3))#

#=lim_(h->0)1/h*((sqrt(4x+4h+3))^2-(sqrt(4x+3))^2)/(sqrt(4x+4h+3)+sqrt(4x+3))#

#=lim_(h->0)1/h*(4x+4h+3-4x-3)/(sqrt(4x+4h+3)+sqrt(4x+3))#

#=lim_(h->0)1/h*(4h)/(sqrt(4x+4h+3)+sqrt(4x+3))#

#=lim_(h->0)4/(sqrt(4x+4h+3)+sqrt(4x+3))#

#=4/(sqrt(4x+0+3)+sqrt(4x+3))#

#=4/(2sqrt(4x+3))#

#=2/sqrt(4x+3)#