How do you multiply #sqrt[27b] * sqrt[3b^2L]#?

2 Answers
Jun 25, 2017

#sqrt(27b)*sqrt(3b^2L)=9bsqrt(bL)#

Explanation:

As #sqrta*sqrtb=sqrt(axxb)#

Therefore #sqrt(27b)*sqrt(3b^2L)#

= #sqrt(27bxx3b^2L)#

= #sqrt(3xx3xx3xxcolor(red)(bxx3)xxbxxbxxL)#

= #sqrt(3xx3xx3xxcolor(red)(3xxb)xxbxxbxxL)#

= #sqrt(ul(3xx3)xxul(3xx3)xxul(bxxb)xxbxxL)#

= #3xx3xxbxxsqrt(bL)#

= #9bsqrt(bL)#

Jun 25, 2017

#color(blue)(9bsqrt(bL)#

Explanation:

#sqrt(27b)*sqrt(3b^2L)#

#:.=sqrt(3*3*3b)*sqrt(3b^2L)#

#:.=3sqrt(3b)*sqrt(3b^2L)#

#:.=3sqrt(3b)*bsqrt(3L)#

#:.=3bsqrt(3b3L)#

#:.=3*3bsqrt(bL)#

#:.color(blue)(=9bsqrt(bL)#