How do you evaluate #\frac { 4+ 2\sqrt { 5} } { 7+ 3\sqrt { 5} } #?

1 Answer
Jun 25, 2017

#frac(sqrt(5)-1)(2)#

Explanation:

Multiply both the numerator and the denominator by the conjugate of the denominator - switch the plus to a minus.
#frac(4+2sqrt(5))(7+3sqrt(5))*frac(7-3sqrt(5))(7-3sqrt(5))#

Multiply both the numerator and the denominator together.
#frac((4+2sqrt(5))(7-3sqrt(5)))((7+3sqrt(5))(7-3sqrt(5)))=frac(28-12sqrt(5)+14sqrt(5)-(6*5))(49-21sqrt(5)+21sqrt(5)-(9*5)#

Multiply inside the parentheses.
#frac(28-12sqrt(5)+14sqrt(5)-30)(49-21sqrt(5)+21sqrt(5)-45#

Combine like terms.
#frac(2sqrt(5)-2)(4)#

Simplify #2# from the numerator and the denominator.

#frac(sqrt(5)-1)(2)#