R = r#sqrt((A+B)/(A-B))#. Make A the subject of the formula?

1 Answer
Jun 28, 2017

#A=(B(R^2+r^2))/(R^2-r^2)#

Explanation:

#"to gain access to the contents of the square root"#

#"we require to "color(blue)"square both sides"#

#"Note " sqrtaxxsqrta=a#

#rArr(sqrta)^2=a# that is squaring the square root obtains the value inside the square root.

#rArrR^2=(r^2(A+B))/(A-B)larrcolor(blue)" cross-multiply"#

#rArrR^2(A-B)=r^2(A+B)#

#"we require to isolate the terms with A"#

#"distribute and rearrange"#

#R^2A-R^2B=r^2A+r^2B#

#rArrR^2A-r^2A=r^2B+R^2B#

#"take out A as a common factor, B if we wish"#

#rArrA(R^2-r^2)=B(r^2+R^2)#

#"divide both sides by " (R^2-r^2)#

#rArrA=(B(r^2+R^2))/(R^2-r^2)#