For what values of r does the function y = #e^(rx)# satisfy the differential equation 5y'' + 14y' − 3y = 0?

a) For what values of r does the function y = #e^(rx)# satisfy the differential equation 5y'' + 14y' − 3y = 0? (Enter your answers as a comma-separated list.)

r = ???

(b) If #r_1# and #r_2# are the values of r that you found in part (a), show that every member of the family of functions y = #ae^(r_1x) + be^(r_2x)# is also a solution. (Let #r_1# be the larger value and #r_2# be the smaller value.)

2 Answers

(a) r = #1/5#, -3

(b) Shown in explanation.

Explanation:

(b) We replace y with #ae^(r_1 x) + be^(r_2 x)#. First, we must figure out the values for both y' and y''.

y = #ae^(x/5) + be^(-3x)#
y' = #1/5 ae^(x/5) - 3 be^(-3x)#
y'' = #1/25 ae^(x/5) - 9 be^(-3x)#

Now we can insert the values in our differential equation 5y'' + 14y' − 3y = 0.

#5[1/25 ae^(x/5) - 9 be^(-3x)] + 14[1/5 ae^(x/5) - 3 be^(-3x)] − 3[ae^(x/5) + be^(-3x)] = 0#

#a[1/5 e^(x/5) + 14/5 e^(x/5) - 3 e^(x/5)] + b[45 e^(-3x) - 42 e^(-3x) - 3 e^(-3x)] = 0#

#a[3 e^(x/5) - 3 e^(x/5)] + b[45 e^(-3x) - 42 e^(-3x) - 3 e^(-3x)] = 0#

#a[3 e^(x/5) - 3 e^(x/5)] + b[3 e^(-3x) - 3 e^(-3x)] = 0#

a[0] + b[0] = 0

0 = 0

Since the solutions are both 0, it means that every member of the family of functions in y = #ae^(r_1 x) + be^(r_2 x)# is a solution to 5y'' + 14y' − 3y = 0.

Jun 29, 2017

#r=1/5# or #-3#; For details please see below.

Explanation:

(a) As #y=e^(rx)#

#y'=(dy)/(dx)=re^(rx)#

and #y''=r^2e^(rx)#

Hence #5y'' + 14y' − 3y = 0# can be written as

#5r^2e^(rx)+14re^(rx)-3e^(rx)-0#

or #5r^2+14r-3=0#

or #5r^2+15r-r-3=0#

or #(5r-1)(r+3)=0#

i.e. #r=1/5# or #-3#

(b) Consider the two solutions as #r_1# and #r_2#, then we have #5r_1^2+14r_1-3=0# and #5r_2^2+14r_2-3=0#

As #y=ae^(r_1x)+be^(r_2x)#, then

#y'=ar_1e^(r_1x)+br_2e^(r_2x)#

and #y''=ar_1^2e^(r_1x)+br_2^2e^(r_2x)#

#:.# #5y''+14y'−3y=5ar_1^2e^(r_1x)+5br_2^2e^(r_2x)+14ar_1e^(r_1x)+14br_2e^(r_2x)-3ae^(r_1x)-3be^(r_2x)#

= #ae^(r_1x)(5r_1^2+14r_1-3)+be^(r_2x)(5r_2^2+14r_2-3)#

= #0#

Hence #y=ae^(r_1x)+be^(r_2x)# is also a solution of #5y''+14y'−3y=0#