We have string #f_n# with #f_(n+1)-f_n=3f_n#, and #f_n=-2^(2n-1)#. If #h_n=f_1+f_2+...+f_n# then #lim_(n->oo)h_n/h_(n+1)=#?

1 Answer
Jun 29, 2017

See below.

Explanation:

If #h_n = -1/2sum_(k=1)^n 2^(2k) = -1/2sum_(k=1)^n 4^k# but

#sum_(k=1)^n 4^k=(4^(n+1)-1)/(4-1)-1 = 4/3(4^n-1)# then

#h_n/h_(n+1) = (4^n-1)/(4^(n+1)-1)# and

#lim_(n->oo)h_n/h_(n+1)=lim_(n->oo)(1-4^(-n))/(4-4^(-n))=1/4#