How do you find the integral of # (sin 2x + 1)^2#?

1 Answer
Jun 29, 2017

#int (sin2x+1)^2dx = 3/2 x -cos 2x -1/8sin 4x +C#

Explanation:

Expand the power of the binomial:

#int (sin2x+1)^2dx = int (sin^2 2x + 2 sin 2x +1)dx#

Use the linearity of the integral:

#int (sin2x+1)^2dx = int sin^2 2x dx + 2 int sin 2x dx +int dx#

Solve the integrals separately:

#int dx = x+C_1#

#2 int sin 2x dx = int sin 2x d(2x) = -cos 2x+C_2#

#int sin^2 2x dx = int (1-cos 4x)/2dx = 1/2x -1/8 sin(4x) +C_3#

And collecting the terms:

#int (sin2x+1)^2dx = 3/2 x -cos 2x -1/8sin 4x +C#

and applying trigonometric formulas to reduce to functions of the same angle:

#int (sin2x+1)^2dx = 3/2 x -cos 2x -1/4sin 2x cos 2x+C#

#int (sin2x+1)^2dx = 3/2 x -cos 2x (1/4sin 2x +1)+C#