How do you find the slope of the tangent line to the graph of the function #h(t)=t^2+3# at (-2,7)?
1 Answer
Jun 30, 2017
The equation of the tangent is -
#y=-4x-1#
Explanation:
Given -
#h(t)=t^2+3#
Let us have it as -
#y=t^2+3#
Its slope at any point is given by its first derivative.
#dy/dx=2t#
Slope of the curve exactly at
#dy/dx=2(-2)=-4#
The tangent is passing through the point
The slope of the tangent at Point
#m=-4#
#x=-2#
#y=7#
#mx+c=y#
#(-4)(-2)+c=7#
#8+c=7#
#c=7-8=-1#
The equation of the tangent is -
#y=-4x-1#