How do you factor #2x^3-3x^2-2x+3#?
2 Answers
Jul 4, 2017
Explanation:
First, start off by factoring the first two terms.
Next, factor out the last two terms.
By doing these steps, you now have
The last thing you can do is factor
Jul 4, 2017
Explanation:
#"note that the coefficients sum to zero"#
#2-3-2+3=0#
#rArr(x-1)" is a factor"#
#rArrcolor(red)(2x^2)(x-1)color(magenta)(+2x^2)-3x^2-2x+3#
#=color(red)(2x^2)(x-1)color(red)(-x)(x-1)color(magenta)(-x)-2x+3#
#=color(red)(2x^2)(x-1)color(red)(-x)(x-1)color(red)(-3)(x-1)color(magenta)(-3)+3#
#=color(red)(2x^2)(x-1)color(red)(-x)(x-1)color(red)(-3)(x-1)+0#
#rArr2x^3-3x^2-2x+3#
#=(x-1)(color(red)(2x^2-x-3))#
#=(x-1)(2x-3)(x+1)#