What is the derivative of #(sinx)^(cos^(-1)x)#?
2 Answers
# dy/dx = (sinx)^(cos^(-1)x) \ (cos^(-1)x \ cotx -(ln sinx)/sqrt(1-x^2) )#
Explanation:
Let:
# y=(sinx)^(cos^(-1)x) #
Take Natural logarithms of both sides:
# ln y = ln {(sinx)^(cos^(-1)x) }#
# " " = (cos^(-1)x) \ ln {sinx}#
Differentiate Implicitly,applying the product rule and chain rule:
# 1/y \ dy/dx = (cos^(-1)x)(d/dx ln {sinx}) + (d/dx cos^(-1)x)(ln {sinx}) #
# " " = (cos^(-1)x)(1/sinx \ cosx) + (-1/sqrt(1-x^2))(ln {sinx}) #
# " " = cos^(-1)x \ cosx/sinx -1/sqrt(1-x^2)(ln {sinx}) #
# " " = cos^(-1)x \ cotx -(ln sinx)/sqrt(1-x^2) #
And so:
# dy/dx = y \ (cos^(-1)x \ cotx -(ln sinx)/sqrt(1-x^2) )#
# " " = (sinx)^(cos^(-1)x) \ (cos^(-1)x \ cotx -(ln sinx)/sqrt(1-x^2) )#
Explanation:
Let,
Here, by the Chain Rule,
For the Derivative on the R.H.S., we use the Product Rule
and the Chain Rule.
Using
Enjoy Maths.!