How do you evaluate #\root[ 3] { 2187} + 2\root [ 3] { 3}#? Prealgebra Exponents, Radicals and Scientific Notation Cube Root 1 Answer Shwetank Mauria Jul 4, 2017 #root(3)2187+2root(3)3=11root(3)3# Explanation: #root(3)2187+2root(3)3# = #root(3)(3xx3xx3xx3xx3xx3xx3)+2root(3)3#) = #root(3)(ul(3xx3xx3)xxul(3xx3xx3)xx3)+2root(3)3# = #3xx3xxroot(3)3+2root(3)3# = #9root(3)3+2root(3)3# = #11root(3)3# Answer link Related questions How do you simplify #root(3)96#? How do you simplify #root(3)432#? How do you simplify #root(3)(-54)#? How do you simplify #root(3)(-1080)#? How do you simplify #root(3)(375)#? How do you simplify #root(3)(162)#? How do you simplify #root3(72)#? How do you find the cube roots #root3(27)#? How do you find the cube roots #root3(729)#? How do you find the cube roots #root3(64)#? See all questions in Cube Root Impact of this question 2221 views around the world You can reuse this answer Creative Commons License