How do you evaluate #\frac { x ^ { 2} - 11x + 28} { x - 4} \cdot \frac { 2x } { x - 7}#?

1 Answer
Jul 4, 2017

#2x#

Explanation:

Factorise the first numerator to give #(x-4)(x-7)#

#((x-4)(x-7))/(x-4) xx (2x)/(x-7)#

The #(x-4)# will cancel with the one below and the #(x-7)# will cancel with the one to the bottom right

#(cancel((x-4))cancel((x-7)))/cancel((x-4)) xx (2x)/cancel((x-7))#

leaving #2x#