How do you simplify #\frac { \tan \theta + \cot \theta } { \tan \theta } #?

1 Answer
Jul 5, 2017

#(tantheta + cottheta)/(tantheta) = color(blue)(csc^2theta#

Explanation:

This expression can also be written as

#(tantheta)/(tantheta) + (cottheta)/(tantheta)#

#1 + (cottheta)/(tantheta)#

#1 + cot^2theta#

We can use the trigonometric identity

#1 + cot^2theta = csc^2theta#

The simplified version is thus #color(blue)(csc^2theta#.