How do you find the exact value of #tan 150# using the half angle identity?

1 Answer
Jul 5, 2017

#tan 150 = - sqrt3/3#

Explanation:

Call tan 150 = tan t -->
#tan 2t = tan 300 = tan (-60 + 360) = tan (-60) = - sqrt3#
Use trig identity:
#tan 2t = (2tant)/(1 - tan^2 t)#
In this case:
#(2tan t)/(1 - tan^2 t) = - sqrt3#.
Cross multiply -->
#- sqrt3 + sqrt3tan^2 t = 2tan t#
#sqrt3tan^2 t - 2tan t - sqrt3 = 0#.
Solve this quadratic equation for tan t.
#D = d^2 = b^2 - 4ac = 4 + 12 = 16# --> #d = +- 4#
There are 2 real roots:
#tan t = -b/(2a) +- d/(2a) = 2/2sqrt3 +- 4/2sqrt3 = sqrt3/3 +- 2sqrt3/3#
a. #tan t = tan 150 = (3sqrt3)/3 = sqrt3# (rejected because tan 150 is negative)
b. #tan t = tan 150 = - sqrt3/3 = - 0.577#
Check by calculator.
#tan 150 = - 0.577 = - sqrt3/3#. Proved.