How do you solve #cosx+2cosxsinx=0# on the interval #[0, 2pi)#?

1 Answer
Jul 6, 2017

#x={pi/2,(7pi)/6,(3pi)/2,(11pi)/6}#

Explanation:

#cosx+2cosxsinx=0# can be written as

#cosx(1+2sinx)=0#

Hence either #cosx=0# i.e. #x=pi/2# or #(3pi)/2#

or #1+2sinx=0# i.e. #sinx=-1/2# i.e. #x=(7pi)/6# or #(11pi)/6#

and hence #x={pi/2,(7pi)/6,(3pi)/2,(11pi)/6}#