How do you use the limit definition to find the derivative of #y=sqrt(-4x-2)#?
1 Answer
See below.
Explanation:
The limit definition of the derivative is given by:
#f(x)=lim_(h->0)(f(x+h)-f(x))/h#
We have
Putting this into the above definition:
#f(x)=lim_(h->0)(sqrt(-4(x+h)-2)-sqrt(-4x-2))/h#
Now we attempt to simplify.
#=>lim_(h->0)(sqrt(-4x-4h-2)-sqrt(-4x-2))/h#
Clearly we must get
#=>lim_(h->0)[((sqrt(-4x-4h-2)-sqrt(-4x-2))/h)*(sqrt(-4x-4h-2)+sqrt(-4x-2))/(sqrt(-4x-4h-2)+sqrt(-4x-2)))]#
#=>lim_(h->0)[((-4x-4h-2)-(-4x-2))/(h(sqrt(-4x-4h-2)+sqrt(-4x-2)))]#
#=>lim_(h->0)[-(4cancelh)/(cancelh(sqrt(-4x-4h-2)+sqrt(-4x-2)))]#
#=>lim_(h->0)[-(4)/(sqrt(-4x-4h-2)+sqrt(-4x-2))]#
#=>-(4)/(sqrt(-4x-4(0)-2)+sqrt(-4x-2))#
#=>-(4)/(sqrt(-4x-2)+sqrt(-4x-2))#
#=>-(4)/(2sqrt(-4x-2))#
#=>-(2)/(sqrt(-4x-2))#
We can verify this answer by taking the derivative directly (using the chain rule):
#y=sqrt(-4x-2)#
#=(-4x-2)^(1/2)#
#y'=1/2(-4x-2)^(-1/2)*(-4)#
#=-2/(sqrt(-4x-2))#