How do you use the limit definition to find the derivative of #y=sqrt(-4x-2)#?

1 Answer
Jul 11, 2017

See below.

Explanation:

The limit definition of the derivative is given by:

#f(x)=lim_(h->0)(f(x+h)-f(x))/h#

We have #f(x)=y=sqrt(-4x-2)#

Putting this into the above definition:

#f(x)=lim_(h->0)(sqrt(-4(x+h)-2)-sqrt(-4x-2))/h#

Now we attempt to simplify.

#=>lim_(h->0)(sqrt(-4x-4h-2)-sqrt(-4x-2))/h#

Clearly we must get #h# out of the denominator. We can do this by multiplying the numerator and denominator by the conjugate of the numerator.

#=>lim_(h->0)[((sqrt(-4x-4h-2)-sqrt(-4x-2))/h)*(sqrt(-4x-4h-2)+sqrt(-4x-2))/(sqrt(-4x-4h-2)+sqrt(-4x-2)))]#

#=>lim_(h->0)[((-4x-4h-2)-(-4x-2))/(h(sqrt(-4x-4h-2)+sqrt(-4x-2)))]#

#=>lim_(h->0)[-(4cancelh)/(cancelh(sqrt(-4x-4h-2)+sqrt(-4x-2)))]#

#=>lim_(h->0)[-(4)/(sqrt(-4x-4h-2)+sqrt(-4x-2))]#

#=>-(4)/(sqrt(-4x-4(0)-2)+sqrt(-4x-2))#

#=>-(4)/(sqrt(-4x-2)+sqrt(-4x-2))#

#=>-(4)/(2sqrt(-4x-2))#

#=>-(2)/(sqrt(-4x-2))#

We can verify this answer by taking the derivative directly (using the chain rule):

#y=sqrt(-4x-2)#

#=(-4x-2)^(1/2)#

#y'=1/2(-4x-2)^(-1/2)*(-4)#

#=-2/(sqrt(-4x-2))#