How do you integrate #int (x^2 - 8x + 44) / ((x + 2) (x - 2)^2)# using partial fractions?

1 Answer
Jul 11, 2017

I decomposed integrand into basic fractions,

#(x^2-8x+44)/((x+2)*(x-2)^2)=A/(x+2)+B/(x-2)+C/(x-2)^2#

#(x^2-8x+44)=A*(x-2)^2+B*(x^2-4)+C*(x+2)#

#(x^2-8x+44)=A*(x^2-4x+4)+B*(x^2-4)+C*(x+2)#

#(x^2-8x+44)=(A+B)*x^2+(-4A+C)*x+(4A-4B+2C)#

After equating coefficients, I found #A+B=1#, #-4A+C=-8# and #4A-4B+2C=44# equations,

After solving system of them simultaneously, I found;

#A=4, B=-3# and #C=8#.

Thus,

#int(x^2-8x+44)/((x+2)*(x-2)^2)dx#

=#int4(dx)/(x+2)-int3(dx)/(x-2)+int8(dx)/(x-2)^2#

=#4Ln(|x+2|)-3Ln(|x-2|)-8/(x-2)+C#

Explanation:

I decomposed integrand into basic fractions.