Prove that for any complex number #z#, #mod(1/z)=1/(modz)# and #Arg(1/z)=-Argz#?

1 Answer
Jul 12, 2017

Please see below.

Explanation:

Let #z=a+ib# and in polar form we can write it as

#z=re^(itheta)#, where #r=sqrt(a^2+b^2)# is modulus and #theta=tan^(-1)(b/a)# is Argand.

Hence, #1/z=1/(a+ib)=(a-ib)/((a+ib)(a-ib))=(a-ib)/(a^2+b^2)#

= #a/(a^2+b^2)-ib/(a^2+b^2)#

Hence, while #mod(1/z)=sqrt((a/(a^2+b^2))^2+(b/(a^2+b^2))^2)#

= #1/sqrt(a^2+b^2)=1/(modz)#

This will be true is #a!=0!=b#

#Arg(1/z)=tan^(-1)((-b/(a^2+b^2))/(a/(a^2+b^2)))#

= #tan^(-1)(-b/a)=-tan^(-1)(b/a)=-Arg(z)#

This is true if #a!=0!=b#