How do you divide #-\frac { 7} { 8} \div \frac { 7} { 12}#?

2 Answers
Jul 14, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

#((-7)/8)/(7/12)#

We can now use this rule for dividing fractions:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(-7)/color(blue)(8))/(color(green)(7)/color(purple)(12)) => (color(red)(-7) xx color(purple)(12))/(color(blue)(8) xx color(green)(7)) => -(cancel(color(red)(-7)) xx color(purple)(12))/(color(blue)(8) xx cancel(color(green)(7))) => (-12)/8 =>#

#(4 xx -3)/(4 xx 2) => (color(red)(cancel(color(black)(4))) xx -3)/(color(red)(cancel(color(black)(4))) xx 2) =>#

#-3/2#

Jul 14, 2017

#-3/2#

Explanation:

Dividing by a fraction is the same as multiply by its reciprocal.

#-7/8 color(blue)(div 7/12)#

#= -7/8 color(blue)(xx 12/7)#

Notice that multiplying by #12# converts the first fraction into twelfths, while dividing by #7#, determines how many groups of #7# can be made with the twelfths.

#-cancel7/cancel8^2 xx cancel12^3/cancel7" "larr# cancel where possible

#-3/2#

The entire answer is negative because a negative number multiplied by a positive number gives a negative.