How do you solve #\frac { v - 1} { 6} = 31- \frac { 6v - 1} { 2}#?

1 Answer
Jul 15, 2017

See a solution process below:

Explanation:

First, multiply each side of the equation by #color(red)(6)# to eliminate the fractions while keeping the equation balanced:

#color(red)(6) xx (v - 1)/6 = color(red)(6)(31 - (6v - 1)/2)#

#cancel(color(red)(6)) xx (v - 1)/color(red)(cancel(color(black)(6))) = (color(red)(6) xx 31) - (color(red)(6) xx (6v - 1)/2)#

#v - 1 = 186 - (cancel(color(red)(6))3 xx (6v - 1)/color(red)(cancel(color(black)(2))))#

#v - 1 = 186 - 3(6v - 1)#

#v - 1 = 186 - (3 * 6v) - (3 xx - 1)#

#v - 1 = 186 - 18v - (-3)#

#v - 1 = 186 - 18v + 3#

#v - 1 = 186 + 3 - 18v#

#v - 1 = 189 - 18v#

Next, add #color(red)(1)# and #color(blue)(18v)# to each side of the equation to isolate the #v# term while keeping the equation balanced:

#v - 1 + color(red)(1) + color(blue)(18v) = 189 - 18v + color(red)(1) + color(blue)(18v)#

#1v + color(blue)(18v) - 1 + color(red)(1) = 189 + color(red)(1) - 18v + color(blue)(18v)#

#(1 + color(blue)(18))v - 0 = 190 - 0#

#19v = 190#

Now, divide each side of the equation by #color(red)(19)# to solve for #v# while keeping the equation balanced:

#(19v)/color(red)(19) = 190/color(red)(19)#

#(color(red)(cancel(color(black)(19)))v)/cancel(color(red)(19)) = 10#

#v = 10#