How do you simplify #\frac { ( 4p ^ { 5} r ^ { 3} ) ^ { 2} } { ( 2p ^ { 4} ) ( 3p r ^ { 6} ) }#?

1 Answer
Jul 15, 2017

#(4p^5r^3)^2/((2p^4)(3pr^6))=(8p^5)/3#

Explanation:

#(4p^5r^3)^2/((2p^4)(3pr^6))#

= #(4^2(p^5)^2(r^3)^2)/(2xx3xx(p^4xxp)xxr^6)#

= #(16p^(5xx2)r^(3xx2))/(6p^(4+1)r^6)#

= #(16p^10r^6)/(6p^5r^6)#

= #(2xx8p^10r^6)/(2xx3p^5r^6)#

= #(cancel2xx8p^10cancel(r^6))/(cancel2xx3p^5cancel(r^6))#

= #(8p^(10-5))/3#

= #(8p^5)/3#