How do you solve #\cos x + \sin x = \sqrt { 2}#?

2 Answers
Jul 15, 2017

The solution is #S={pi/4+2pin}#, #n in ZZ#

Explanation:

We need

#sin(x+a)=sinxcosa+sinacosa#

Our equation is

#sinx+cosx=sqrt2#

#1/sqrt2sinx+1/sqrt2cosx=1#

Therefore,

#cosa=1/sqrt2#

and #sina=1/sqrt2#

So,

#a=pi/4#

#sin(x+pi/4)=1#

#x+pi/4=pi/2+2pin#

#x=pi/4+2pin#, #nin ZZ#

Jul 16, 2017

#x = pi/4 + 2kpi#

Explanation:

Use trig identity:
#sin x + cos x = sqrt2cos (x - pi/4)#
In this case:
#sin x + cos x = sqrt2 = sqrt2cos (x - pi/4)#
#cos (x - pi/4) = 1#
Unit circle gives:
#x - pi/4 = 0# --> #x = pi/4 + 2kpi#
Check by calculator:
#x = pi/4# --> #cos x = sqrt2/2# --> #sin x = sqrt2/2#
#cos x + sin x = sqrt2/2 + sqrt2/2 = sqrt2# (proved)