How do you simplify #(sqrt2-3)(sqrt6+5)#?

1 Answer
Jul 15, 2017

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(sqrt(2)) - color(red)(3))(color(blue)(sqrt(6)) + color(blue)(5))# becomes:

#(color(red)(sqrt(2)) xx color(blue)(sqrt(6))) + (color(red)(sqrt(2)) xx color(blue)(5)) - (color(red)(3) xx color(blue)(sqrt(6))) - (color(red)(3) xx color(blue)(5))#

#sqrt(color(red)(2) * color(blue)(6)) + 5sqrt(2) - 3sqrt(6) - 15#

#sqrt(12) + 5sqrt(2) - 3sqrt(6) - 15#

#sqrt(4 * 3) + 5sqrt(2) - 3sqrt(6) - 15#

#sqrt(4)sqrt(3) + 5sqrt(2) - 3sqrt(6) - 15#

#2sqrt(3) + 5sqrt(2) - 3sqrt(6) - 15#