How do you add #\frac { 9v } { v ^ { 2} - 49} + \frac { v } { v - 7}#?

1 Answer
Jul 16, 2017

#=(v^2+16v)/((v+7)(v-7))#

Explanation:

Factorise wherever possible first.

#(9v)/(v^2-49) + v/(v-7)#

#=(9v)/((v+7)(v-7)) + v/(v-7)#

Convert to a common denominator which is #(v+7)(v-7)#

#=(9v)/((v+7)(v-7)) + v/((v-7)) xx((v+7))/((v+7))#

#=(9v+v(v+7))/((v+7)(v-7))#

#=(v^2+7v+9v)/((v+7)(v-7)#

#=(v^2+16v)/((v+7)(v-7))#