How do you solve #\frac { 2} { x + 4} \geq \frac { 2} { x - 4}#?

2 Answers
Jul 18, 2017

There is no answer.

Refer to the process in the explanation.

Explanation:

Solve:

#2/(x+4)>=2/(x-4)#

Multiply both sides by #(x+4)#.

#(x+4)xx2/(x+4)>=(2(x+4))/(x-4)#

Cancel.

#color(red)cancel(color(black)((x+4)))xx2/color(red)cancel(color(black)(x+4))>=(2(x+4))/(x-4)#

Simplify.

#2>=(2(x+4))/(x-4)#

Multiply both sides by #(x-4)#.

#2xx(x-4)>=(2(x+4))/(x-4)xx(x-4)#

Cancel.

#2xx(x-4)>=(2(x+4))/color(red)cancel(color(black)(x-4))xxcolor(red)cancel(color(black)((x-4))#

Simplify.

#2(x-4)>=2(x+4)#

Divide each side by #2#.

#(2(x-4))/2>=(2(x+4))/2#

Cancel.

#(color(red)cancel(color(black)(2))(x-4))/color(red)cancel(color(black)(2))>=(color(red)cancel(color(black)(2))(x+4))/color(red)cancel(color(black)(2))#

Simplify.

#x-4>=x+4#

Subtract #x# from both sides.

#x-x-4>=x-x+4#

Cancel.

#color(red)cancel(color(black)(x))-color(red)cancel(color(black)(x))-4>=color(red)cancel(color(black)(x))-color(red)cancel(color(black)(x))+4#

Simplify.

#-4>=4#

This is impossible, so there is no answer.

Jul 18, 2017

The solution is #=x in (-4,4)#

Explanation:

Let's rearrange and simplify the inequality

We cannot do crossing over

#2/(x+4)>=2/(x-4)#

#2/(x+4)-2/(x-4)>=0#

#(2(x-4)-2(x+4))/((x+4)(x-4))#

#(2x-8-2x-8)/((x+4)(x-4))>=0#

#-16/((x+4)(x-4))>=0#

Let #f(x)=-16/((x+4)(x-4))=16/((x+4)(4-x))#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-4##color(white)(aaaaaaaaa)##4##color(white)(aaaaaaa)##+oo#

#color(white)(aaaa)##x+4##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##+#

#color(white)(aaaa)##4-x##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-#

Therefore,

#f(x)>=0#, when #x in (-4,4)#

graph{2/(x+4)-2/(x-4) [-18.02, 18.01, -9.05, 8.97]}