What is the exact value of #tan 15^@# ?

2 Answers
Jul 18, 2017

# tan 15 = 2 - sqrt3#

Explanation:

Use trig identity: #tan 2a = (2tan a)/(1 - tan^2 a)#
In this case #tan 2a = tan 30 = 1/sqrt3#. We get:
#(2tan a)/(1 - tan^2 a) = 1/sqrt3#
#2sqrt3tan a = 1 - tan^2 a#
#tan^2 a + 2sqrt3tan a - 1 = 0#
Solve this quadratic equation for tan a.
#D = d^2 = b^2 - 4ac = 12 + 4 = 16# --> #d = +- 4#
There are 2 real roots:
#tan a = -b/(2a) +- d/(2a) = - 2sqrt3/2 +- 4/2 = - sqrt3 +- 2#
a. #tan a = tan 15 = - sqrt3 - 2# (rejected because tan 15 > 0), and
b. #tan a = tan 15 = - sqrt3 + 2#

Jul 18, 2017

#tan 15^@ = 2 - sqrt(3)#

Explanation:

Use:

#sin 30^@ = 1/2#

#cos 30^@ = sqrt(3)/2#

#sin 45^@ = cos 45^@ = sqrt(2)/2#

#sin(alpha-beta) = sin alpha cos beta - sin beta cos alpha#

#cos(alpha-beta) = cos alpha cos beta + sin alpha sin beta#

#tan theta = sin theta / cos theta#

Then:

#sin 15^@ = sin (45^@ - 30^@)#

#color(white)(sin 15^@) = sin 45^@ cos 30^@ - sin 30^@ cos 45^@#

#color(white)(sin 15^@) = sqrt(2)/2 sqrt(3)/2 - 1/2 sqrt(2)/2#

#color(white)(sin 15^@) = sqrt(2)/4(sqrt(3)-1)#

#color(white)()#

#cos 15^@ = cos (45^@ - 30^@)#

#color(white)(cos 15^@) = cos 45^@ cos 30^@ + sin 45^@ sin 30^@#

#color(white)(cos 15^@) = sqrt(2)/2 sqrt(3)/2 + sqrt(2)/2 1/2#

#color(white)(cos 15^@) = sqrt(2)/4(sqrt(3)+1)#

#color(white)()#

#tan 15^@ = sin 15^@ / cos 15^@#

#color(white)(tan 15^@) = (color(red)(cancel(color(black)(sqrt(2)/4)))(sqrt(3)-1)) / (color(red)(cancel(color(black)(sqrt(2)/4)))(sqrt(3)+1))#

#color(white)(tan 15^@) = (sqrt(3)-1) / (sqrt(3)+1)#

#color(white)(tan 15^@) = ((sqrt(3)-1)^2) / ((sqrt(3)+1)(sqrt(3)-1))#

#color(white)(tan 15^@) = (3-2sqrt(3)+1) / (3-1)#

#color(white)(tan 15^@) = 2 - sqrt(3)#

#color(white)()#
Footnote

We can see the original values of #sin 30^@#, etc used above by considering the right angled triangles:

enter image source here

enter image source here