How do you find the equation of a line tangent to the function #y=(x^3+3x^2)/x# at x=1?

2 Answers
Jul 18, 2017

#y=5x-1#

Explanation:

#•color(white)(x)m_(color(red)"tangent")=dy/dx" at x = 1"#

#y=(x^3+3x^2)/x=x^2+3x#

#rArrdy/dx=2x+3#

#"at x = 1"#

#dy/dx=2+3=5#

#y=4rArr(1,4)" is tangent point"#

#"equation of line is"#

#y-4=5(x-1)#

#rArry=5x-1#

Jul 18, 2017

We fill first calculate the value of the derivative at 1.

Explanation:

Let's find the derivative first using the quotient rule :

#dy/dx=((3x^2+6x)x-x^3-3x^2)/x^2#

so at #x=1# we get

#dy/dx|_1=((3+6)-1-3)/1=5#

Let's find #y(1)=4#

Now we can find the equation of the tangent line using the formula

#y-y(1)=y'(1)(x-1)=>y-4=5(x-1)=>y=5x-1#